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Abstract. We study the diffraction properties of a class of quasiperiodic superlattices 
described by the substitution rules A-+ APB, B + A where p is a positive integer. These 
can be obtained by a projection method with a characteristic irrational U, e.g., for the 
Fibonacci lattice ( p  = 1) A +  AB, B + A, U = (1 + d5)/2.  It is shown that the diffraction 
peak positions K k  ,can be labeled by two integers k ,  rand are given by the expression K k  , = 
2nA-'rdk where U' are the so called precious means. It is shown that the Fibonacci lattice 
has the unique property that u = U ' .  

1. Introduction 

In the last years there has been a large and growing interest in one-dimensional (ID) 
quasiperiodic systems. From the theoreticians standpoint the interest stems partly from 
the fact that although quasicrystals are perfectly ordered, the Bloch theorem is inap- 
plicable since there is no translational symmetry. On the other hand, the wavefunctions 
are not all exponentially localised like in disordered ID systems. Quasicrystals seem to 
be, in some sense, something intermediate between conventional crystals and disordered 
solids. Parallel to the theoretical development in the field of quasicrystals the advent of 
new experimental techniques (Shinjo and Takada 1987 and Chang and Giessen 1985) 
such as molecular-beam epitaxy (MBE) has made it possible to produce superlattices of 
extremely high quality. A superlattice is constructed by growing alternate layers of two 
different constituents A and B. A and B may for instance be n atomic layers of MO and 
m atomic layers of V ,  respectively. The superlattice layers A and B are in general chosen 
to alternate periodically (Karkut etal1985a, b and Terauchi et a1 1985), but superlattices 
also provide an excellent method for realization of ID quasiperiodicity. The samples 
grown will be quasiperiodic in the growth (2) direction and periodic in thexy plane. This 
was first achieved by Merlin et a1 (1985) who fabricated a sample grown by MBE of 
alternating layers of GaAs and AlAs arranged to form a Fibonacci sequence. The 
Fibonacci sequence can be described as the sequence obtained by starting with an A and 
repeated application of the substitution rules A + AB, B + A, i.e., 

A + AB + ABA + ABAAB + ABAABABA + ABAABABAABAAB + . . . 
and the corresponding superlattice is obtained by attaching a basis to each A and B. The 
experiments done on quasiperiodic superlattices include diffraction (Merlin et al1985, 
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Karkut et a1 1986 and Hu et a1 1986), superconductivity (Karkut et a1 1986) and Raman 
scattering (Merlin et a1 1985), but so far only very few experiments have been performed 
on non-fibonaccian quasicrystals (Birch et a1 1989). For the Fibonacci quasicrystal it is 
well known that the superlattice diffraction peaks can be labeled by two integers ( k ,  r) 
such that the position of the peaks satisfy Kk," = 2nA-'rzk, where z = (1 + v5)/2 is the 
golden mean and A is an average lattice parameter. In this work we present a theoretical 
investigation of the superlattice diffraction properties of a class of quasicrystals gen- 
erated by the substitution rule, A + APB, B + A and show that the diffraction peaks 
satisfy Kk,r  = 2nA-lratk under certain specified conditions. 

2. The superlattice 

Consider the density distribution ps(z), where S stands for superlattice, 

where [XI denotes the largest integer smaller than or equal to x and AA and AB are two 
different tile sizes. It is assumed that AA # AB. For arational equation (1) will describe 
a periodic density distribution, whereas an irrational a will give rise to a quasiperiodic 
distribution of the tiles AA and AB. It has been shown previously (Lu and Birman 1986) 
that the Fourier transform of this distribution is given by 

where 

and m, n are integers. The superlattice is constructed by introducing two densities pA(z) 
and pB(z) describing the two building blocks A and B and writing the total density, p(z) ,  
of the superlattice as 

For clarity, p(z) is illustrated in figure 1. Now, dividing ps into two parts Aps and Bps 

with 2, as in equation ( l ) ,  we may write p(z) as the sum of two convolutions 
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Figure 1. The superlattice density of equation (4) for the special case of a Fibonacci super- 
lattice, U = (1 + d 5 ) / 2 .  

also with 2, as in equation (1). Using the forms ( 5 )  for *ps and Bps one obtains 

2 ,  5 z < z,+1 z n + 1  - zn = AA 

(7) 

Equation (6) suggests that we write the Fourier transform %(K)  of the total density p(z) 
as the product sum 

where $B, *Bs and B$s are the Fourier transforms of pA, pB, *ps and BpS, respect- 
ively. Now, the *ps and Bps describing the renormalised lattice of only A or B sites may 
also be written in the form (1) with renormalised parameters *A, *AA, *AB and U* for 
*ps and BA, BAA, BAB and uB in the case of Bps. 

3. The sublattices 

In this section we write the sublattices *ps and Bps in the form of equation (1) and 
establish the values of the parameters We denote as previously 
the site n by A if z , + ~  -2, = AA and by B if z,+ - z ,  = AB and we let *z,(~z,) be the 
position of the mth A (B). We also define the number of A (B) sites in the original 
sequence of n sites as n A  (nB). Note that we may without loss of generality assume U > 1 
since[n/u] = [n{l/u} + n[l/u]] = [n{l/u}] + n[l/u] with{x}definedfromx = {x} + [XI. 

u ~ , ~  and 
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Then from equation (1) we have nA = [n/a] and nB = n - nA. Then the position of the 
mth A site is given by 

2;  = (m - 1)AA + nBAB 

nB = P - [ P / 4  

(9) 

where nB is the number of B sites before the mth A site. The number nB is given by 

(10) 

where p is the largest integer satisfying [p/a] = m - 1. since we are interested only in 
irrational o w e  may then putp = [ma]. Inserting this into equations (9) and (10) we have 

2; = (m - 1)AA + A ~ ( [ m a ]  - m + 1) = mAA + AB[m(a - I)] + AB - AA 

mAA f &[m[a - 11 + m{o - 1}] + AB - AA 

= m(AA + AB[a - 11) + AB[m{a - 1}] + AB - A A .  

This can be written as 

z ;  = mAAB + ( A A ~  - A I \ ~ ) [ m / a ~ ]  + AB - AA (11) 

where 

AAB = ( A A  + AB[o - 11) AAA - AAB = AB = {a - I}-'. (12) 

2: = mBAB + - BAilg)[m/a~] (13) 

Similar considerations for the B sites lead to the following equation 

with 

BAB = (AB + A A [  ( 0 - 1) - ' I )  
- 1)-'}-I. 

BAA - BAB = AA OB = {(a (14) 

With the correct choice of tile sizes, the peaks of 
provided a, and aB satisfy: a, = 0, = 0'. From equations (12) and (14) we then have 

and BBs can be made to coincide 

{a - 1} = {(a - 1)-'}=. (a - 1)-1 = a - 1 + p  * U 

= (2 - p  + d4 +p2)/2 p = 1 , 2 . .  *.  
Notice that a (p  = 1) = t = (1 + d/5)/2 generating the familiar Fibonacci sequence 
satisfies a = a, = aB = 0'. This is a unique property of the Fibonacci quasicrystal. It is 
also interesting to note that the a(p)  satisfying equation (15) generates sequences also 
described by the substitution rules; A + APB, B + A. Before we proceed, and in order 
to simplify equations (12) and (14), it is useful to establish a few important relations for 
the numbers a and a' = aA = 0,. From (12) and (15) we have, since 0 < a - 1 < 1 

0' = (0 - l}-' = (a - 1)-' = 2 / ( d 4  + p2 - p )  = (p + V4 + p2)/2 (16) 

[ a - l ] = O ~ [ ( a - 1 ) - 1 ] = [ 0 ' ] = [ o - 1 + p ] = [ o - 1 ] + p = p .  (17) 

and 

Following Holzer (1988) we call the irrationals a' the 'precious means' and define the 
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generalised Fibonacci numbers F,, such that F,, = pF,  + Fn- with Fo = 0 and F ,  = 1. 
The following useful relation is then proved in the appendix. 

(18) ( 7 t n  - - F , d  + Fn-l. 
If in the following we assume CJ to be given by equation (15) we my, using equations 
(16)-(17), rewrite (12) and (14) as 

,AB = AA ,A, - ,AB = AB a, = 0’ (19) 

BAB = AB + pAA BA, - BAB = A A  OB = (5‘. (20) 

and 

Equations ( l l ) ,  (13), (19) and (20) completely describe the sublattices consisting of the 
original A and B sites and thus the densities *ps and Bps are determined. 

4. Tailoring the tiles 

In this section we will describe how to tailor the tile sizes AA and AB in order to obtain 
a simple expression for the diffraction peak positions. Given that the ratio between the 
two tiles A, and AB is given by 0‘ and using equations (3), (19) and (20) we may write 
the quantities *sBKmn, A,BZmn and for the sublattices as 

AKmn = (23r/,A)(n + (m/o’))  ’4Z,n = ( 2 n / * A ) A ~ ( n  - md) 

*A = AB(d + l / d )  (21) 
and 

BKmn = (2n/BA) ( n  + (m/a’))  BZ,n = (2n/BA)A,(n - m(7’)d 

BA = AB(u2 + 1) (22) 
where the last two relations in (22) follows from equation (18). Now, from (2) we see 
that large peaks will occur in A,BBs( K )  for K = Kmn such that A,BZm,, = 0. Since (T’ can 
be written as the simple continued fraction 

1 
a ’ = p +  1 (23) 

1 

1 
1 

P+- p +  . . .  

P +  
P +  

the kth rational approximant to 0’ is given by Fk/Fk-l and the condition A,BZmn = 0 
reduces to n = rFk, m = rFk-l, with integers r ,  k. Applying this to equations (21) and 
(22) and using equation (18) then leads to the following expression for the diffraction 
peak positions 
A3BKkr = ( ~ x / * , ~ A )  (?‘/a’) ( F k d  + Fk-1) = (2~/*,~Aa‘)ra’~ r ,  k E Z (24) 
Finally, noting that ’A = U‘ *A, we conclude that for h A / &  = 0‘ *ss and B%s have 
peaks at the same K values K k , r  given by 

Kk,r = ( 2 7 ~ / ~ A ) r a ’ ~  r ,  k E 2. (25) 
In summary, we have shown that quasicrystalline superlattices with the quasi- 

periodicity given by equation (1) with o a s  in equation (15) have large diffraction peaks 
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at wavevectors Kk,? labeled by two integers ( k ,  Y). These quasicrystals can also be 
generated by a substitution rule; A ---f APB, B + A the first (p = 1) of which is the 
celebrated Fibonacci sequence. It is interesting to note that the Fibonacci sequence is 
indeed special since it is the only case for which U = d. 
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Appendix 

The statement urn = F,a‘ + F,-l (equation (18)) is easily proven by induction, as 
follows. Since F1 = 1 and F,  = 0, the statement is trivially true for n = 1. Also since 

,- 
U’* = ((p + v4 + p2)/2)’ = p(p + V4 + p2)/2 + 1 = F 2 d  + F1 (A11 

the statement holds for n = 2. Assuming equation (18) holds for some n and using (Al)  
we then have 

o’”+~ F , d 2  + F , _ l o ’  = F,(F20’ + F , )  + F , - l d  = ( p F ,  + F n - l ) ~ ’  + F,  

= F,+~o‘  + F,  

and equation (18) follows by induction. 
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